In recent years, the World Health Organization has increasingly emphasized air quality in production environments, leading to heightened societal demands for monitoring of pollutant gases at room temperature. Traditional semiconductor gas-sensitive materials, such as tin oxide (SnO2), have their gas-sensing performance largely limited by their receptor functions, resulting in common issues like low response and poor recovery at room temperature. Spinel-type bimetallic oxides, such as nickel cobaltate (NiCo2O4), offer a unique solution due to their rich adsorption sites on the surface, which provide distinctive receptor functions for detecting toxic gases at room temperature. Herein, NiCo2O4 is synthesized via a one-step hydrothermal method, with a porous spherical cluster structure, and combined with SnO2 to form a heterojunction. The NiCo2O4-SnO2 heterojunction film gas sensor exhibits excellent gas-sensing performance for H2S at room temperature, including high response, short response time, good repeatability, and selectivity. Additionally, the unique receptor functions of the NiCo2O4 were analyzed through first-principles calculations, revealing a semiconductor p-n conversion phenomenon in the presence of H2S gas. The composite also demonstrates a conversion from p-n heterojunction to n-n homojunction during the sensing process, enhancing its gas-sensing performance. This work not only addresses the receptor function limitations of traditional gas-sensitive semiconductor but also provides a feasible approach for controlling carrier types in semiconductors.
Read full abstract