Maintaining a low-temperature environment is paramount in pursuing reliable operation for infrared detectors. To address the rising demand for long-wave infrared detectors functioning in low-temperature environments around 60 K, this study investigates the enhanced efficiency of a 60 K coaxial pulse tube cryocooler (PTC) through both simulation analysis and experimental methods. A PTC model was developed using Sage software to optimize parameters such as cold finger size. Analysis of the internal flow field highlighted that variations in cold head temperature, frequency, and input power significantly impact phase angle distribution within the regenerator. Experimental results yielded the same conclusion and confirmed how these critical factors affect the PTC’s performance. Through systematic optimization of simulations and experiments, a cooling performance of 12.7 W/60 K was achieved with an input power of 300 W. Furthermore, when the input power of the PTC was 200 W, a cooling capacity of 9.2 W/60 K was achieved, demonstrating a relative Carnot efficiency of 18.3 %.
Read full abstract