Climate warming exacerbates the deterioration of soil and degradation of vegetation caused by coastal flooding, impairing ecosystem climate-regulating functions. This will elevate the risk of carbon storage (CS) loss, further intensifying climate change. To delve deeper into this aspect, we aimed to integrate future land use/land cover changes and global mean sea-level rise to assess the impact of coastal floods on terrestrial CS under the effects of climate change. We compared the 10-year (RP10) and 100-year (RP100) return-period floods in 2020 with projected scenarios for 2050 under SSP1-26, SSP2-45, SSP3-70, and SSP5-85. The study findings indicate that CS loss caused by coastal flooding in China’s coastal zones was 198.71 Tg (RP10) and 263.46 Tg (RP100) in 2020. In 2050, under the SSP1-26, SSP2-45, and SSP3-70 scenarios, the CS loss is projected to increase sequentially, underscoring the importance of implementing globally coordinated strategies for mitigating climate change to effectively manage coastal flooding. The value of CS loss is expected to increase in 2050, with an anticipated rise of 97–525% (RP10) and 91–498% (RP100). This highlights the essential need to include coastal flood-induced CS changes in carbon emission management and coastal climate risk assessments.
Read full abstract