Medical image segmentation is a fundamental task for medical image analysis and surgical planning. In recent years, UNet-based networks have prevailed in the field of medical image segmentation. However, convolutional neural networks (CNNs) suffer from limited receptive fields, which fail to model the long-range dependency of organs or tumors. Besides, these models are heavily dependent on the training of the final segmentation head. And existing methods can not well address aforementioned limitations simultaneously. Hence, in our work, we proposed a novel shape prior module (SPM), which can explicitly introduce shape priors to promote the segmentation performance of UNet-based models. The explicit shape priors consist of global and local shape priors. The former with coarse shape representations provides networks with capabilities to model global contexts. The latter with finer shape information serves as additional guidance to relieve the heavy dependence on the learnable prototype in the segmentation head. To evaluate the effectiveness of SPM, we conduct experiments on three challenging public datasets. And our proposed model achieves state-of-the-art performance. Furthermore, SPM can serve as a plug-and-play structure into classic CNNs and Transformer-based backbones, facilitating the segmentation task on different datasets. Source codes are available at https://github. com/AlexYouXin/Explicit-Shape-Priors.