AbstractIn fluvio‐tidal settings, the sediment is dominantly derived from the river systems. However, the importance of landward tidal transport of sediment in tidally influenced sedimentary environments is difficult to assess, particularly in the rock record. This problem is addressed using two intervals within the Lower Cretaceous McMurray Formation, each representing a distinct inclined heterolithic stratification motif. The ichnological variation between the heterolithic intervals is analyzed to determine which lithosomes are associated with brackish‐water (tidally influenced) colonization windows. From this, the relative fluvial influence responsible for the deposition of the fine and coarse members can be determined. Both of the inclined heterolithic stratification fabrics studied record the deposition of fluvio‐tidal point bars wherein the heterolithic bedding represents variations in river discharge. The first fabric comprises inclined heterolithic stratification in which bioturbation only occurs in mudstone beds. This fabric indicates that deposition occurred in more proximal positions within a fluvio‐tidal system (i.e. the outermost inner to middle estuary or distributary channels). In this example sand deposition is interpreted to represent high‐energy, freshwater dune migration within a fluvial‐dominated setting, whereas mud beds reflect brackish‐water suspension deposition during times of low river discharge. The second fabric, which is interpreted to have developed in more distal depositional positions (i.e. the middle estuary or seaward of the turbidity maximum in deltas), consists of inclined heterolithic stratification with laminated mudstone and bioturbated sandstone. In these inclined heterolithic stratification successions the mudstone beds were deposited under the influence of freshwater and heightened sedimentation rates, whereas bioturbated sandstone was colonized under brackish‐water conditions and in the presence of tidally facilitated sediment transport. In both examples, the bioturbated lithosomes are related to colonization windows that indicate the predominance at that time of marine or tidally influenced processes over fluvial processes.
Read full abstract