The accurate and rapid detection of persulfate concentration is important for environmental decontamination and human health protection. In this work, a novel self-powered electrochemical sensor for the sensitive monitoring of persulfate was developed, which utilized cobalt tetroxide (Co3O4@CC) or tin-doped cobalt tetroxide (SnxCo3-xO4@CC) cathode as the sensing element and anode with electrogenic microorganisms as the power supplier. The Co3O4@CC and SnxCo3-xO4@CC electrodes were fabricated by in situ growing nanostructured Co3O4 or SnxCo3-xO4 catalysts on carbon cloth. Electrochemical tests revealed that these electrodes exhibited excellent catalytic reduction performance toward persulfate because of the synergistic catalysis by Co3O4 and electrode electrons, well-exposed Co2+/Co3+ catalytic sites, and high electron transfer efficiency. Tin doping could enhance the catalytic persulfate reduction by improving the conductivity and electron transfer of the Co3O4 catalyst. The electrode prepared at a hydrothermal temperature of 90°C and a tin dosage of 0.286g·cm-2 achieved the highest persulfate reduction activity under pH 7. The sensing properties of the self-powered sensors toward persulfate were explored in detail. Results showed that under the optimal external load of 300 Ω, the proposed sensor could display a broad detection range of 0 to 1500μmol L-1 K2S2O8 with sensitivities of 1.13 and 0.12 μA μmol-1 L, a detection limit of 1.11μmol L-1 (S/N = 3), and a fast response time within 30s. The sensors also presented satisfactory reproducibility and selectivity during the detection of persulfate. The proposed sensor will provide a new approach for sensitive, on-site, and real-time monitoring of persulfate for a wide range of applications.
Read full abstract