In this study, CO2 seepage of sandstone samples from the Taiyuan-Shanxi Formation coal seam roof in Ordos Basin, China, under temperature-stress coupling was studied with the aid of the TAWD-2000 coal rock mechanics-seepage test system. Furthermore, the evolution law and influencing factors on permeability for CO2 in sandstone samples with temperature and axial pressure were systematically analyzed. The results disclose that the permeability of sandstone decreases with the increase in stress. The lower the stress is, the more sensitive the permeability is to stress variation. High stress results in a decrease in permeability, and when the sample is about to fail, the permeability surges. The permeability of sandstone falls first and then rises with the rise of temperature, which is caused by the coupling among the thermal expansion of sandstone, the desorption of CO2, and the evaporation of residual water in fractures. Finally, a quadratic function mathematical model with a fitting degree of 98.2% was constructed between the temperature-stress coupling effect and the permeability for CO2 in sandstone. The model provides necessary data support for subsequent numerical calculation and practical engineering application. The experimental study on the permeability characteristics for CO2 in sandstone under high temperature and overburden pressure is crucial for evaluating the storage potential and predicting the CO2 migration evolution in underground coal gasification coupling CO2 storage projects.