The Olympias Pb-Zn(Au, Ag) sulfide ore deposit, E. Chalkidiki, N. Greece, is hosted by marbles of the polymetamorphic Kerdilia Formation of Paleozoic or older age. The geologic environment of the ore also comprises biotite-hornblende gneisses and amphibolites intruded by Tertiary pegmatite-aplite dikes, lamprophyre dikes, the 30-Ma Stratoni granodiorite, and porphyritic stocks. Only limited parts of the deposit display shear folding and brecciation; most of it is undeformed. Microthermometry of fluid inclusions in gangue syn-ore quartz indicates three types of primary and pseudosecondary inclusions: (1) H2O-rich, 1–18 wt.% NaCl equivalent, <3.6 mol% CO2; (2) H2O-CO2 inclusions, <4wt.% NaCl equivalent, with variable CO2 contents, coexisting in both undeformed and deformed ore; (3) aqueous, highsalinity (28–32 wt,% NaCl equivalent) inclusions found only in undeformed ore. Type 2 inclusions are differentiated into two sub-types: (2a) relatively constant CO2 content in the narrow range of 8–15 mol% and homogenization to the liquid phase; (2b) variable CO2 content between 18 and 50 mol% and homogenization to the vapor phase. Type 1 and 2b inclusions are consistent with trapping of two fluids by unmixing of a high-temperature, saline, aqueous, CO2-bearing fluid of possible magmatic origin, probably trapped in type 2a inclusions. Fluid unmixing and concomitant ore mineralization took place at temperatures of 350 ± 30 °C and fluctuating pressures of less than 500 bar, for both undeformed and deformed ores. The wide salinity range of type 1 inclusions probably represents a complex effect of salinity increase, due to fluid unmixing and volatile loss, and dilution, due to mixing with low-salinity meteoric waters. High solute enrichment of the residual liquid, due to extreme volatile loss during unmixing, may account for high salinity type 3 inclusions. The Olympias fluid inclusion salinity-temperature gradients bear similarities to analogous gradients related to Pb-Zn ores formed in “granite”-hosted, low-T distalskarn, skarn-free carbonate-replacement and epithermal environments.
Read full abstract