ConspectusThe study of the origin of life requires a multifaceted approach to understanding where and how life arose on Earth. One of the most compelling hypotheses is the chemosynthetic origin of life at hydrothermal vents, as this condition has been considered viable for early forms of life. The continuous production of H2 and heat by serpentinization generates reductive conditions at hydrothermal vents, in which CO2 can be used to build large biomolecules. Although this involves surface catalysis and an autocatalytic process, in which solid minerals act as catalysts in the conversion of CO2 to metabolically important organic molecules, the systematic investigation of heterogeneous catalysis to comprehend prebiotic chemistry at hydrothermal vents has not been undertaken.In this Account, we discuss geochemical CO2 fixation to metabolic intermediates by synthetic minerals at hydrothermal vents from the perspective of heterogeneous catalysis. Ni and Fe are the most abundant transition metals at hydrothermal vents and occur in the active site of the enzymes carbon monoxide dehydrogenases/acetyl coenzyme A synthases (CODH/ACS). Synthetic free-standing NiFe alloy nanoparticles can convert CO2 to acetyl coenzyme A pathway intermediates such as formate, acetate, and pyruvate. The same alloy can further convert pyruvate to citramalate, which is essential in the biological citramalate pathway. Thermal treatment of Ni3Fe nanoparticles under NH3, which can occur in hydrothermal vents, results in Ni3FeN/Ni3Fe heterostructures. This catalyst has been demonstrated to produce prebiotic formamide and acetamide from CO2 and H2O using Ni3FeN/Ni3Fe as both substrate and catalyst. In the process of serpentinization, Co can be reduced in the vicinity of olivine, a Mg-Fe silicate mineral. This produces CoFe and CoFe2 with serpentine in nature, representing SiO2-supported CoFe alloys. In mimicking these natural minerals, synthetic SiO2-supported CoFe alloys demonstrate the same liquid products as NiFe alloys, namely, formate, acetate, and pyruvate under mild hydrothermal vent conditions. In contrast to the NiFe system, hydrocarbons up to C6 were detected in the gas phase, which is also present in hydrothermal vents. The addition of alkali and alkaline-earth metals to the catalysts results in enhanced formate concentration, playing a promotional role in CO2 reduction. Finally, Co was loaded onto ordered mesoporous SiO2 after modification with cations to simulate the minerals found in hydrothermal vents. These catalysts were then investigated under diminished H2O concentration, revealing the conversion of CO2 to CO, CH4, methanol, and acetate. Notably, the selectivity to metabolically relevant methanol was enhanced in the presence of cations that could generate and stabilize the methoxy intermediate. Calculation using the machine learning approach revealed the possibility of predicting the selectivity of CO2 fixation when modifying mesoporous SiO2 supports with heterocations. Our research demonstrates that minerals at hydrothermal vents can convert CO2 into metabolites under a variety of prebiotic conditions, potentially paving the way for modern biological CO2 fixation processes.