Controlling the magnetic anisotropy of nanoparticles is a crucial but challenging step for developing new magnetic functions. Here, we demonstrate a simple approach to controlling the shape of Co nanoparticles in a Co-SiO2 nanogranular film from oblate to prolate spheroid by varying the substrate rotation speed during the tandem fabrication process without changing the film composition (Co:SiO2 = 3:7). Changing the nanoparticles from oblate to prolate, increasing perpendicular length of ellipsoidal nanoparticles, changes the magnetic anisotropy axis of Co–SiO2 nanogranular films from in-plane to out-of-plane, which indicates that the shape anisotropy profoundly affects the magnetic properties. Despite the small tunneling current of a few tens of nanoamperes, a maximum tunneling magnetoresistance effect of up to 2.8 % was realized under an applied magnetic field of 12 kOe in the film plane. Achieving both in-plane and perpendicular spin-dependent tunneling, the anisotropic nanogranular films imply direction controllable tunneling materials as future topological nanoarchitecture. Such high-resistivity nanogranular films with a controllable magnetic nanoparticle shape facilitate the design of new magneto-optical devices with high withstand voltages.
Read full abstract