Wireless Sensor Network (WSN) has inexpensive, small, and less energy sensor nodes, which are allocated in random ways in particular areas for measuring the phenomenon or events in that field. In recent days, WSN has played a vital role in various applications, like industrial monitoring, medical treatments, agricultural monitoring, and military operations. However, the security challenges and network lifetime are the main issues in the existing methods. In order to overcome these issues, the Taylor-Spotted Cat Optimization (Taylor-SCO) approach is devised in this paper. Here, the Cluster Heads (CHs) are selected based on the developed optimization method, named Taylor CSO. Moreover, the delay, distance, and energy parameters are considered for effective Cluster Head Selection (CHS). Here, route maintenance is also done for increasing network lifetime and reducing complexities. In addition, the Modified K-Vertex Disjoint Paths Routing (KVDPR) model is established for routing. The modification of KVDPR is carried out using several factors, such as link reliability, throughput, and various trust factors. Moreover, the developed Taylor-SCO algorithm is developed by combining the Spotted Hyena Optimizer (SHO), Cat Swarm Optimization (CSO) algorithm, and Taylor series. The Taylor-SCO achieved better performance with energy consumption, trust, and throughput of 0.00037 J, 0.51, and 793160 kbps.
Read full abstract