Aero-engines, which encounter clouds of airborne particulate, experience reduced performance due to the deposition of particles on their high-pressure turbine nozzle guide vanes. The rate of this degradation depends on particle properties, engine operating state and the duration of exposure to the particle cloud, variables that are often unknown or poorly constrained, leading to uncertainty in model predictions. A novel method coupling one-dimensional gas turbine performance analysis with generalised predictions of particle deposition is developed and applied through the use of Monte Carlo simulations to better predict high-pressure turbine degradation. This enables a statistical analysis of deterioration from which mean performance losses and confidence intervals can be defined, allowing reductions in engine life and increased operational risk to be quantified. The method is demonstrated by replicating two particle cloud encounter events for the Rolls-Royce RB211-524C engine and is used to predict empirical particle properties by correlating measured engine performance data with Monte Carlo model inputs. Potential improvements in the confidence of these predictions due to more tightly constrained input and validation data are also demonstrated. Finally, the potential combination of the Monte Carlo coupled degradation model with in-service engine performance data and particle properties determined through remote or in situ sensing is outlined and its role in a digital twin to enable a predictive approach to operational capability is discussed.
Read full abstract