Inferior contact interface and low charge transfer efficiency seriously restrict the performance of heterojunctions. Herein, chemically bonded α-Fe2 O3 /Bi4 MO8 Cl (M=Nb, Ta) dot-on-plate Z-scheme junctions with strong internal electric field are crafted by an in situ growth route. Experimental and theoretical results demonstrate that the internal electric field provides a powerful driving force for vectorial migration of photocharges between Bi4 MO8 Cl and α-Fe2 O3 , and the interfacial Fe-O bond not only serves as an atomic-level charge flow highway but also lowers the charge transfer energy barrier, thereby accelerating Z-scheme charge transfer and realizing effective spatial charge separation. Impressively, α-Fe2 O3 /Bi4 MO8 Cl manifests a significantly improved photocatalytic activity for selective oxidation of aromatic alcohols into aldehydes (Con. ≥92 %, Sel. ≥96 %), with a performance improvement of one to two orders of magnitude. This work presents atomic-level insight into interfacial charge flow steering.