We investigated emergency-use limb tourniquet design features effects on application processes (companion paper) and times to complete those processes (this paper). Sixty-four appliers watched training videos then each applied all eight tourniquets: Combat Application Tour- niquet Generation 7 (CAT7), SOF™ Tactical Tourniquet-Wide Generation 3 (SOFTTW3), SOF™ Tactical Tourniquet-Wide Generation 5 (SOFTTW5), Tactical Mechanical Tourniquet (TMT), OMNA Marine Tourniquet (OMT), X8T-Tourniquet (X8T), Tactical Ratcheting Medical Tourniquet (Tac RMT), and RapidStop Tourniquet (RST). Application processes times were captured from videos. From "Go" to "touch tightening system" was fastest with clips and self-securing redirect buckles and without strap/redirect application process problems (n, median seconds: CAT7 n=23, 26.89; SOFTTW3 n=11, 20.95; SOFTTW5 n=16, 20.53; TMT n=5, 26.61; OMT n=12, 25.94; X8T n=3, 18.44; Tac RMT n=15, 30.59; RST n=7, 22.80). From "touch tightening system" to "last occlusion" was fastest with windlass rod systems when there were no tightening system understanding or mechanical problems (seconds: CAT7 n=48, 4.21; SOFTTW3 n=47, 5.99; SOFTTW5 n=44, 4.65; TMT n=38, 6.21; OMT n=51, 6.22; X8T n=48, 7.59; Tac RMT n=52, 8.44; RST n=40, 8.02). For occluded, tightening system secure applications, from "touch tightening system" to "Done" was fastest with self-securing tightening systems tightening from a tight strap (occluded, secure time in seconds from a tight strap: CAT7 n=17, 14.47; SOFTTW3 n=22, 10.91; SOFTTW5 n=38, 9.19; TMT n=14, 11.42; OMT n=44, 7.01; X8T n=12 9.82; Tac RMT n=20, 6.45; RST n=23, 8.64). Suboptimal processes in- crease application times. Optimal design features for fast, occlusive, secure tourniquet applications are self-securing strap/ redirect systems with an easily identified and easily used clip and self-securing tightening systems.