Surface ozone (O3) and nitrogen oxides (NOx = NO + NO2) measured at the rural station in Belsk (51.83° N, 20.79° E), Poland, over the period of 1995–2023, were examined for long-term variability of O3 and its relationship to changes in the air temperature and NOx. Negative and positive trends were found for the 95th and 5th percentile, respectively, in the O3 data. A weak positive correlation (statistically significant) of 0.33 was calculated between O3 and the temperature averaged from sunrise to sunset during the photoactive part of the year (April–September). Recently, O3 maxima have become less sensitive to temperature changes, reducing the incidence of photochemical smog. The ozone–climate penalty factor decreased from 4.4 µg/m3/°C in the 1995–2004 period to 3.9 µg/m3/°C in the 2015–2023 period. The relationship between Ox (O3 + NO2) and NOx concentrations averaged from sunrise to sunset determined the local and regional contribution to Ox variability. The seasonal local and regional contributions remained unchanged in the period of 1995–2023, stabilizing the average O3 level at Belsk. “NOx-limited” and “VOC-limited” photochemical regimes prevailed in the summer and autumn, respectively. For many winter and spring seasons between 1995 and 2023, the type of photochemical regime could not be accurately determined, making it difficult to build an effective O3 mitigation policy.
Read full abstract