Globally, the increase in pedestrian fatalities due to road traffic crashes (RTCs) on transport networks has been a major concern. In low- and middle-income countries (LMICs), pedestrians face a high risk due to RTCs on the rural highway network. The safety evaluation methods, such as observational before-after, empirical Bayes, full Bayes, and cross-sectional methods have been used to identify risk factors of RTCs. However, these methods are data-intensive and have associated limitations. Thus, this study employed a matched case–control method to identify the risk factors of fatal pedestrian crashes. This study utilized crash, traffic volume, speed, geometric, and roadside environment data of a 175 km six-lane rural highway in India. The identified major risk factors, such as clear zone width, the presence of habitation, service roads, and horizontal curve sections, increase the likelihood of a fatal pedestrian crash. This study provides specific insights for modifying the speed limit of highway sections passing through habitation. On such highway sections, designers should shift focus to pedestrian safety. It also suggests that the service road design needs to be reconsidered from a pedestrian safety viewpoint. The proposed method can be used in any other setting having similar traffic and socio-economic conditions.