BackgroundPatients with peripheral artery disease with intermittent claudication (PAD-IC) have altered gait variability from the first step they take, well before the onset of claudication pain. The mechanisms underlying these gait alterations are poorly understood.AimsTo determine the effect of reduced blood flow on gait variability by comparing healthy older controls and patients with PAD-IC. We also determined the diagnostic value of gait variability parameters to identify the presence of PAD.MethodsA cross-sectional cohort design was used. Thirty healthy older controls and thirty patients with PAD-IC walked on a treadmill at their self-selected speed in pain free walking (normal walking for healthy older controls; prior to claudication onset for PAD) and reduced blood flow (post vascular occlusion with thigh tourniquet for healthy older controls; pain for PAD) conditions. Gait variability was assessed using the largest Lyapunov exponent, approximate entropy, standard deviation, and coefficient of variation of ankle, knee, and hip joints range of motion. Receiver operating characteristics curve analyses of the pain free walking condition were performed to determine the optimal cut-off values for separating individuals with PAD-IC from those without PAD-IC.Results and discussionPatients with PAD-IC have increased amount of variability for knee and hip ranges of motion compared with the healthy older control group. Regarding the main effect of condition, reduced blood flow demonstrated increased amount of variability compared with pain free walking. Significant interactions between group and condition at the ankle show increased values for temporal structure of variability, but a similar amount of variability in the reduced blood flow condition. This demonstrates subtle interactions in the movement patterns remain distinct between PAD-IC versus healthy older controls during the reduced blood flow condition. A combination of gait variability parameters correctly identifies PAD-IC disease 70% of the time or more.ConclusionsGait variability is affected both by PAD and by the mechanical induction of reduced blood flow. Gait variability parameters have potential diagnostic ability, as some measures had 90.0% probability of correctly identifying patients with PAD-IC.