Case-based approaches have been used extensively in STEM classrooms to enhance the real-world applicability of course content. Prior research in the bioeducation field indicates, specifically, that such methods lead to increases in students’ conceptual understanding and affect in the discipline relative to more traditional methods. Despite these outcomes, the majority of case study exercises are formatted in a generalist manner. In other words, the content and context of the case study itself are not framed around the communities in which the students live. In an effort to address this concern, we developed and implemented a series of place-based case study (PBCS) exercises within the introductory cell and molecular biology courses at our institutions. A comparative, quasi-experimental approach was used to evaluate the impact of PBCSs versus non-PBCSs on cognitive and non-cognitive student outcomes. Results indicated that both PBCSs and non-PBCSs led to increases in students’ content knowledge; however, no statistically significant difference existed in post-exercise performance between the PBCS and non-PBCS cohorts at the University of Texas, for instance, after controlling for confounding factors. Importantly, data also revealed that students within the PBCS cohort agreed more strongly that the case studies provided them with a better understanding of how scientific advancements and research impacted the community in which they lived than did their peers in the non-PBCS cohort. Collectively, these outcomes suggest that PBCSs offer a scalable, classroom-based approach to engage students in relevant, practical experiences that are of direct interest to them and, ideally, the broader scientific community.
Read full abstract