This study aimed to evaluate acute pancreatitis (AP) severity using convolutional neural network (CNN) models with enhanced computed tomography (CT) scans. Three-dimensional DenseNet CNN models were developed and trained using the enhanced CT scans labeled with two severity assessment methods: the computed tomography severity index (CTSI) and Atlanta classification. Each labeling method was used independently for model training and validation. Model performance was evaluated using confusion matrices, areas under the receiver operating characteristic curve (AUC-ROC), accuracy, precision, recall, F1 score, and respective macro-average metrics. A total of 1,798 enhanced CT scans met the inclusion criteria were included in this study. The dataset was randomly divided into a training dataset (n = 1618) and a test dataset (n = 180) with a ratio of 9:1. The DenseNet model demonstrated promising predictions for both CTSI and Atlanta classification-labeled CT scans, with accuracy greater than 0.7 and AUC-ROC greater than 0.8. Specifically, when trained with CT scans labeled using CTSI, the DenseNet model achieved good performance, with a macro-average F1 score of 0.835 and a macro-average AUC-ROC of 0.980. The findings of this study affirm the feasibility of employing CNN models to predict the severity of AP using enhanced CT scans.
Read full abstract