Based on the Hamilton canonical equations for ocean surface waves with four-five-six-wave resonance conditions, the determinate dynamical equation of four-five-six-wave resonances for ocean surface gravity waves in water with a finite depth is established, thus leading to the elimination of the nonresonant second-, third-, fourth-, and fifth-order nonlinear terms though a suitable canonical transformation. The four kernels of the equation and the 18 coefficients of the transformation are expressed in explicit form in terms of the expansion coefficients of the gravity wave Hamiltonian in integral-power series in normal variables. The possibilities of the existence of integrals of motion for the wave momentum and the wave action are discussed, particularly the special integrals for the latter. For ocean surface capillary–gravity waves on a fluid with a finite depth, the sixth-order expansion coefficients of the Hamiltonian in integral-power series in normal variables are concretely provided, thus naturally including the classical fifth-order kinetic energy expansion coefficients given by Krasitskii.
Read full abstract