In the era of functional brain networks, our understanding of how they evolve across life in a healthy population remains limited. Here, we investigate functional connectivity across the human lifespan using magnetoencephalography in a cohort of 792 healthy individuals, categorized into young (13 to 30 yr), middle (31 to 54 yr), and late adulthood (55 to 80 yr). Employing corrected imaginary phase-locking value, we map the evolving landscapes of connectivity within delta, theta, alpha, beta, and gamma classical frequency bands among brain areas. Our findings reveal significant shifts in functional connectivity patterns across all frequency bands, with certain networks exhibiting increased connectivity and others decreased, dependent on the frequency band and specific age groups, showcasing the dynamic reorganization of neural networks as age increases. This detailed exploration provides, to our knowledge, the first all-encompassing view of how electrophysiological functional connectivity evolves at different life stages, offering new insights into the brain's adaptability and the intricate interplay of cognitive aging and network connectivity. This work not only contributes to the body of knowledge on cognitive aging and neurological health but also emphasizes the need for further research to develop targeted interventions for maintaining cognitive function in the aging population.
Read full abstract