Neurodynamic models that simulate how micro-level alterations propagate upward to impact macroscopic neural circuits and overall brain function may offer valuable insights into the pathological mechanisms of schizophrenia (SCZ). In this study, we integrated a neurodynamic model with the classical Contrastive Variational Autoencoder (CVAE) to extract and evaluate macro-scale SCZ-specific features, including subject-level, region-level parameters, and time-varying states. Firstly, we demonstrated the robust fitting of the model within our multi-site dataset. Subsequently, by employing representational similarity analysis and a deep learning classifier, we confirmed the specificity and disorder-related information capturing ability of SCZ-specific features. Moreover, analysis of the attractor characteristics of the neurodynamic system revealed significant differences in attractor space patterns between SCZ-specific states and shared states. Finally, we utilized Partial Least Squares (PLS) regression to examine the multivariate mapping relationship between SCZ-specific features and symptoms, identifying two sets of correlated modes implicating unique molecular mechanisms: one mode corresponding to negative and general symptoms, and another mode corresponding to positive symptoms. Our results provide valuable insights into disorder-specific neurodynamic features and states associated with SCZ, laying the foundation for understanding the intricate pathophysiology of this disorder.
Read full abstract