Hexagonal boron nitride (h-BN) is an influential 2D nanomaterial; however, its practical optoelectronic applications rely primarily on controlling the structural defects. The photoluminescence depends explicitly on the developed vacancies and substitutional defects. The present work utilizes the concept of facile liquid-phase exfoliation of hexagonal (h) boron nitride (BN) powder in common organic solvents and cosolvent mixtures to obtain a layered boron nitride nanosheet (BNNS). Although the literature concerning the layered structure of BNNS obtained by different methods is substantial, what is lacking is a detailed photoluminescence study of the layered structure obtained by changing the solvent and cosolvent mixtures, and here lies the novelty of our work. The obtained layered structure was subjected to a detailed photoluminescence study by varying the temperature. We tried to correlate how the defects originating upon changing the solvent and cosolvent affected the photoluminescence of the layered BNNS. The obtained layered structure is suitably supported by optical and electron microscopy images. High-resolution transmission electron microscopy confirm the presence of a few layers, and X-ray photoelectron spectroscopy studies give an idea of the atomic composition of the obtained BNNS. The photoluminescence properties of the obtained BNNS in water were modulated by the addition of two different classes of block copolymers, e.g., Pluronic (F-68, P-407, and P-123) and Tetronic (T-904, T-908, and T-90R4) copolymers. As an application, we were successful in constructing a nanocomposite material made up of a BNNS-copolymer-organic fluorophore to check the possibilities of generating white light.
Read full abstract