As a special subclass of cyclic codes, BCH codes are usually among the best cyclic codes and have wide applications in communication and storage systems and consumer electronics. Let <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</i> be a <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">q</i> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> -ary BCH code of length <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</i> with respect to an <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</i> -th primitive root of unity β over an extension field of F <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><i>q</i><sup>2</sup></sub> , and let <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</i> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">⊥<i>H</i></sup> denote its Hermitian dual code, where <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">q</i> is a prime power. If both <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</i> and <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</i> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">⊥<i>H</i></sup> are a BCH code with respect to an <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</i> -th primitive root of unity β, then <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</i> is called a <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Hermitian dually-BCH code</i> . The objective of this paper is to derive a necessary and sufficient condition for ensuring that two classes of narrow-sense BCH codes are Hermitian dually-BCH codes. As by-products, lower bounds on the minimum distances of the Hermitian dual codes of these BCH codes are developed, which improve the lower bounds documented in IEEE Trans. Inf. Theory, vol. 68, no. 2, pp. 953-964, 2022, in some cases.
Read full abstract