Previous article Next article A New Class of Inverse M-Matrices of Tree-Like TypeServet Martínez, Jaime San Martín, and Xiao-Dong ZhangServet Martínez, Jaime San Martín, and Xiao-Dong Zhanghttps://doi.org/10.1137/S0895479801396816PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstractIn this paper, we use weighted dyadic trees to introduce a new class of nonnegative matrices whose inverses are column diagonally dominant M-matrices.[1] Google Scholar[2] Claude Dellacherie, , Servet Martínez and , Jaime San Martín, Ultrametric matrices and induced Markov chains, Adv. in Appl. Math., 17 (1996), 169–183 97h:15025 CrossrefISIGoogle Scholar[3] Claude Dellacherie, , Servet Martínez and , Jaime San Martín, Description of the sub‐Markov kernel associated to generalized ultrametric matrices. An algorithmic approach, Linear Algebra Appl., 318 (2000), 1–21 10.1016/S0024-3795(00)00193-2 2001h:15014 CrossrefISIGoogle Scholar[4] Miroslav Fiedler, Some characterizations of symmetric inverse M‐matrices, Proceedings of the Sixth Conference of the International Linear Algebra Society (Chemnitz, 1996), Vol. 275/276, 1998, 179–187 10.1016/S0024-3795(97)10022-2 99h:15024 Google Scholar[5] Miroslav Fiedler, Special ultrametric matrices and graphs, SIAM J. Matrix Anal. Appl., 22 (2000), 106–113 10.1137/S0895479899350988 2001d:15022 LinkISIGoogle Scholar[6] M. Fiedler, , Charles Johnson and , T. Markham, Notes on inverse M‐matrices, Linear Algebra Appl., 91 (1987), 75–81 10.1016/0024-3795(87)90061-9 88m:15002 CrossrefISIGoogle Scholar[7] Charles Johnson, Inverse M‐matrices, Linear Algebra Appl., 47 (1982), 195–216 10.1016/0024-3795(82)90233-6 83m:15003 CrossrefISIGoogle Scholar[8] T. L. Markham, Nonnegative matrices whose inverses are M‐matrices, Proc. Amer. Math. Soc., 36 (1972), pp. 326–330. ISIGoogle Scholar[9] Servet Martínez, , Gérard Michon and , Jaime San Martín, Inverse of strictly ultrametric matrices are of Stieltjes type, SIAM J. Matrix Anal. Appl., 15 (1994), 98–106 94m:15002 LinkISIGoogle Scholar[10] J. McDonald, , R. Nabben, , M. Neumann, , H. Schneider and , M. Tsatsomeros, Inverse tridiagonal Z‐matrices, Linear and Multilinear Algebra, 45 (1998), 75–97 99i:15037 CrossrefGoogle Scholar[11] J. McDonald, , M. Neumann, , H. Schneider and , M. Tsatsomeros, Inverse M‐matrix inequalities and generalized ultrametric matrices, Proceedings of the Workshop “Nonnegative Matrices, Applications and Generalizations” and the Eighth Haifa Matrix Theory Conference (Haifa, 1993), Vol. 220, 1995, 321–341 10.1016/0024-3795(94)00077-Q 96h:15022 Google Scholar[12] Reinhard Nabben, A class of inverse M‐matrices, Electron. J. Linear Algebra, 7 (2000), 53–58 2001c:15030 CrossrefGoogle Scholar[13] Reinhard Nabben and , Richard Varga, A linear algebra proof that the inverse of a strictly ultrametric matrix is a strictly diagonally dominant Stieltjes matrix, SIAM J. Matrix Anal. Appl., 15 (1994), 107–113 95c:15054 LinkISIGoogle Scholar[14] Reinhard Nabben and , Richard Varga, Generalized ultrametric matrices—a class of inverse M‐matrices, Proceedings of the Workshop “Nonnegative Matrices, Applications and Generalizations” and the Eighth Haifa Matrix Theory Conference (Haifa, 1993), Vol. 220, 1995, 365–390 10.1016/0024-3795(94)00086-S 96c:15039 Google Scholar[15] M. Neumann, A conjecture concerning the Hadamard product of inverses of M‐matrices, Linear Algebra Appl., 285 (1998), 277–290 10.1016/S0024-3795(98)10155-6 99h:15008 CrossrefISIGoogle Scholar[16] R. Willoughby, The inverse M‐matrix problem, Linear Algebra and Appl., 18 (1977), 75–94 10.1016/0024-3795(77)90081-7 57:12561 CrossrefISIGoogle ScholarKeywordsnonnegative matrixinverse M-matrixweighted dyadic tree Previous article Next article FiguresRelatedReferencesCited ByDetails Matrix Positivity11 September 2020 Cross Ref Ultrametric MatricesInverse M-Matrices and Ultrametric Matrices | 13 September 2014 Cross Ref LU-Factorization Versus Wiener-Hopf Factorization for Markov ChainsActa Applicandae Mathematicae, Vol. 128, No. 1 | 14 February 2013 Cross Ref Inverse M-matrices, IILinear Algebra and its Applications, Vol. 435, No. 5 | 1 Sep 2011 Cross Ref On zero-pattern invariant properties of structured matricesLinear Algebra and its Applications, Vol. 435, No. 4 | 1 Aug 2011 Cross Ref On the inverse mean first passage matrix problem and the inverse M-matrix problemLinear Algebra and its Applications, Vol. 434, No. 7 | 1 Apr 2011 Cross Ref Characterizations of inverse M-matrices with special zero patternsLinear Algebra and its Applications, Vol. 433, No. 5 | 1 Oct 2010 Cross Ref Path Product Matrices and Eventually Inverse M‐matricesCharles R. Johnson and Ronald L. SmithSIAM Journal on Matrix Analysis and Applications, Vol. 29, No. 2 | 19 March 2007AbstractPDF (126 KB) Volume 24, Issue 4| 2003SIAM Journal on Matrix Analysis and Applications History Published online:31 July 2006 InformationCopyright © 2003 Society for Industrial and Applied MathematicsKeywordsnonnegative matrixinverse M-matrixweighted dyadic treeMSC codes15A0905C5015A57PDF Download Article & Publication DataArticle DOI:10.1137/S0895479801396816Article page range:pp. 1136-1148ISSN (print):0895-4798ISSN (online):1095-7162Publisher:Society for Industrial and Applied Mathematics
Read full abstract