Using the semiglobal control idea from the recent work (Wang and Lin, 2022), we present a different semiglobal method without invoking the dynamic extension technique to prove that in the single-input-single-output (SISO) case, certain nonaffine systems with input delay are semiglobally asymptotically stabilizable (SGAS) via <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$n$</tex-math></inline-formula> -dimensional memoryless output feedback. A dynamic output compensator is constructed and composed of an <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$n$</tex-math></inline-formula> -dimensional nonlinear observer and an observer-based controller, both of them with saturated states. As a consequence, an affine system in a lower triangular form with input delay is shown to be SGAS by <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$n$</tex-math></inline-formula> -dimensional memoryless output feedback. These results provide some answers to the open question in (Wang and Lin, 2022) where <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$(2n-1)$</tex-math></inline-formula> -dimensional output feedback controllers were found by a dynamic extension method: when and how to design delay-free, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$n$</tex-math></inline-formula> -dimensional SGAS output feedback controllers for a significant class of SISO nonaffine systems?