Facet-defining inequalities of the symmetric traveling salesman problem (TSP) polytope play a prominent role in both polyhedral TSP research and state-of-the-art TSP solvers. In this paper, we introduce a new class of facet-defining inequalities, the circlet inequalities. These inequalities were first conjectured in Gutekunst and Williamson [Gutekunst SC, Williamson DP (2019) Characterizing the integrality gap of the subtour LP for the circulant traveling salesman problem. SIAM J. Discrete Math. 33(4):2452–2478] when studying the circulant TSP, and they provide a bridge between polyhedral TSP research and number-theoretic investigations of Hamiltonian cycles stemming from a conjecture from Marco Buratti in 2007. The circlet inequalities exhibit circulant symmetry by placing the same weight on all edges of a given length; our main proof exploits this symmetry to prove the validity of the circlet inequalities. We then show that the circlet inequalities are facet-defining and compute their strength following Goemans [Goemans MX (1995) Worst-case comparison of valid inequalities for the TSP. Math. Programming 69:335–349]; they achieve the same worst case strength as the similarly circulant crown inequalities of Naddef and Rinaldi [Naddef D, Rinaldi G (1992) The crown inequalities for the symmetric traveling salesman polytope. Math. Oper. Res. 17(2):308–326] but are generally stronger. Funding: This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program [Grant DGE-1650441] and by the National Science Foundation Division of Computing and Communications Foundations [Grant CCF-1908517].
Read full abstract