When there is uncertainty in the lower level optimization problem of a bilevel programming, it can be formulated by a robust optimization method as a bilevel program with lower level second-order cone programming problem (SOCBLP). In this paper, we show that the Lagrange multiplier set mapping of the lower level problem of a class of the SOCBLPs is upper semicontinuous under suitable assumptions. Based on this fact, we detect the similarities and relationships between the SOCBLP and its KKT reformulation. Then we derive the specific expression of the critical cone at a feasible point, and show that the second order sufficient conditions are sufficient for the second order growth at an M-stationary point of the SOCBLP under suitable conditions.