The effect of the plum rain weather event on cycling trips reflects the climate resilience of the public bicycle system. However, quantitative studies regarding the impact of plum rain on public bicycle users and corresponding spatial heterogeneity have not been paid much attention. This paper explores the spatial pattern of affected levels from the perspective of cyclist number, place semantics and riding distance. Corresponding public bicycle trips in normal weather are predicted by spatial-temporal random forest prediction. GIS neighborhood statistics and clustering algorithms are adapted to analyze and visualize the affected levels using origin-destination data of public bicycle trips and point of interest data of city public facilities. It is proved that there is an obvious spatial difference in affected levels by plum rain from three dimensions. In the dimension of the number of cyclists, the docking stations with different affected levels are distributed across the whole urban area. In the place semantic dimension, the docking stations with high affected levels show a clustered zonal distribution in the city center. In the dimension of cycling distance, the docking stations with high affected levels are mainly distributed in the periphery of the central urban area. The study theoretically expands the impact mechanism of environment and active transport. It is beneficial for the early monitoring, warning and assessment of climate change risks for public bicycle planning and management.
Read full abstract