A design has been established for the surface decoration of superparamagnetic iron oxide nanoparticles (SPIONs) with anti-vascular endothelial growth factor peptide, HRH, to formulate a targeted paclitaxel (PTX) delivery nanosystem with notable tumor targetability and antiangiogenic activity. The design methodology included (i) tandem surface functionalization via coupling reactions, (ii) pertinent physicochemical characterization, (iii) in vitro assessment of drug release, anti-proliferative activity, and quantification of vascular endothelial growth factor A (VEGF-A) levels, and (iv) in vivo testing using a lung tumor xenograft mouse model. Formulated CLA-coated PTX-SPIONs@HRH depicted a size and surface charge of 108.5 ± 3.5 nm and -30.4 ± 2.3 mV, respectively, and a quasi-spherical shape relative to pristine SPIONs. Fourier transform infrared (FTIR) analysis and estimation of free carboxylic groups supported the preparation of the CLA-coated PTX-SPIONs@HRH. CLA-coated PTX-SPIONs@HRH exhibited high PTX loading efficiency (98.5%) and sustained release in vitro, with a marked dose dependent anti-proliferative activity in A549 lung adenocarcinoma cells, complimented by an enhanced cellular uptake. CLA-coated PTX-SPIONs@HRH significantly reduced secretion levels of VEGF-A in human dermal microvascular endothelial cells from 46.9 to 35.6 pg/mL compared to untreated control. A 76.6% tumor regression was recorded in a lung tumor xenograft mouse model following intervention with CLA-coated PTX-SPIONs@HRH, demonstrating tumor targetability and angiogenesis inhibition. CLA-coated PTX-SPIONs@HRH enhanced the half-life of PTX by almost 2-folds and demonstrated a prolonged PTX plasma circulation time from a subcutaneous injection (SC). Thus, it is suggested that CLA-coated PTX-SPIONs@HRH could provide a potential effective treatment modality for non-small-cell lung carcinoma as a nanomedicine.