In numerous studies, microRNAs (miRNAs) have been authenticated to play vital roles in the pathophysiology of neuropathic pain and other neurological diseases. In our study, we focused on evaluating miR-378 and its potential effects in neuropathic pain development, as well as the underlying molecular mechanisms. Primarily, a chronic sciatic nerve injury (CCI) rat model was established. Next, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was employed to measure the expression levels of miR-378 and EZH2 mRNA; the EZH2 protein expression levels were detected by western blot. A luciferase activity assay monitored the interaction of miR-378 and EZH2. Mechanical and thermal hyperalgesia was also performed to quantitate the effects of overexpression of miR-378 or EZH2 on the CCI rats. We found that miR-378 was down-regulated in the CCI rats, and the overexpression of miR-378 produced significant relief in their pain management. EZH2 was the downstream gene of miR-378 and was negatively regulated by miR-378. The up-regulation of EZH2 reduced the inhibitory effects of miR-378 on the development of neuropathic pain in the CCI rats. miR-378 acts as an inhibitor in the progression of neuropathic pain via targeting EZH2; the miR-378/EZH2 axis may be a novel target for the diagnosis and therapy of neuropathic pain in clinical treatment.
Read full abstract