Protein from plant, as opposed to animal, sources may be preferred in chronic kidney disease (CKD) because of the lower bioavailability of phosphate and lower nonvolatile acid load. Observational cross-sectional study. A total of 2,938 participants with CKD and information on their dietary intake at the baseline visit in the Chronic Renal Insufficiency Cohort Study. Percentage of total protein intake from plant sources (percent plant protein) was determined by scoring individual food items using the National Cancer Institute Diet History Questionnaire (DHQ). Metabolic parameters, including serum phosphate, bicarbonate (HCO₃), potassium, and albumin, plasma fibroblast growth factor 23 (FGF-23), and parathyroid hormone (PTH), and hemoglobin levels. We modeled the association between percent plant protein and metabolic parameters using linear regression. Models were adjusted for age, sex, race, diabetes status, body mass index, estimated glomerular filtration rate, income, smoking status, total energy intake, total protein intake, 24-hour urinary sodium concentration, use of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, and use of diuretics. Higher percent plant protein was associated with lower FGF-23 (P = .05) and higher HCO₃ (P = .01) levels, but not with serum phosphate or parathyroid hormone concentrations (P = .9 and P = .5, respectively). Higher percent plant protein was not associated with higher serum potassium (P = .2), lower serum albumin (P = .2), or lower hemoglobin (P = .3) levels. The associations of percent plant protein with FGF-23 and HCO₃ levels did not differ by diabetes status, sex, race, CKD stage (2/3 vs. 4/5), or total protein intake (≤0.8 g/kg/day vs. >0.8 g/kg/day; P-interaction >.10 for each). This is a cross-sectional study; determination of percent plant protein using the Diet History Questionnaire has not been validated. Consumption of a higher percentage of protein from plant sources may lower FGF-23 and raise HCO₃ levels in patients with CKD.