Chronic sympathetic stimulation drives desensitization and downregulation of β1 adrenergic receptor (β1AR) in heart failure. We aim to explore the differential downregulation subcellular pools of β1AR signaling in the heart. We applied chronic infusion of isoproterenol to induced cardiomyopathy in male C57BL/6J mice. We applied confocal and proximity ligation assay to examine β1AR association with L-type calcium channel, ryanodine receptor 2, and SERCA2a ((Sarco)endoplasmic reticulum calcium ATPase 2a) and Förster resonance energy transfer-based biosensors to probe subcellular β1AR-PKA (protein kinase A) signaling in ventricular myocytes. Chronic infusion of isoproterenol led to reduced β1AR protein levels, receptor association with L-type calcium channel and ryanodine receptor 2 measured by proximity ligation (puncta/cell, 29.65 saline versus 14.17 isoproterenol, P<0.05), and receptor-induced PKA signaling at the plasma membrane (Förster resonance energy transfer, 28.9% saline versus 1.9% isoproterenol, P<0.05) and ryanodine receptor 2 complex (Förster resonance energy transfer, 30.2% saline versus 10.6% isoproterenol, P<0.05). However, the β1AR association with SERCA2a was enhanced (puncta/cell, 51.4 saline versus 87.5 isoproterenol, P<0.05), and the receptor signal was minimally affected. The isoproterenol-infused hearts displayed decreased PDE4D (phosphodiesterase 4D) and PDE3A and increased PDE2A, PDE4A, and PDE4B protein levels. We observed a reduced role of PDE4 and enhanced roles of PDE2 and PDE3 on the β1AR-PKA activity at the ryanodine receptor 2 complexes and myocyte shortening. Despite the enhanced β1AR association with SERCA2a, the endogenous norepinephrine-induced signaling was reduced at the SERCA2a complexes. Inhibiting monoamine oxidase A rescued the norepinephrine-induced PKA signaling at the SERCA2a and myocyte shortening. This study reveals distinct mechanisms for the downregulation of subcellular β1AR signaling in the heart under chronic adrenergic stimulation.
Read full abstract