This aims to assess the efficacy of 2', 3, 3, 5'-Tetramethyl-4'-nitro-2'H-1, 3'-bipyrazole (TMNB), a novel compound, in colitis treatment. Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract with limited effective treatments available. The exploration of new therapeutic agents is critical for advancing treatment options. To assess the effect of TMNB in alleviating symptoms of experimental colitis in mice and to compare its effectiveness with that of sulfasalazine, a standard treatment. Experimental colitis was induced in mice, which were subsequently treated with TMNB at dosages of 50, 100, and 150 mg/kg. The outcomes were evaluated based on colitis symptoms, Colon damage, Disease Activity Index (DAI) scores, and inflammation markers, including nitric oxide (NO) and myeloperoxidase (MPO) levels. Additional assessments included spleen cell proliferation, pro-inflammatory cytokine production (TNF-α, IL-6, IL-1β), and inflammatory genes expression (IL-1β, IL-6, TNF-α, COX2, and iNOS). TMNB treatment significantly alleviated colitis symptoms (100 and 150 mg/kg). These higher doses notably reduced colonic damage, inflammation, hyperemia, edema, and ulceration (p<0.01). The treatment also effectively decreased Disease Activity Index (DAI) scores, demonstrating a marked improvement in clinical signs of colitis (100 mg/kg, p<0.05; 150 mg/kg, p<0.01). Additionally, TMNB substantially lowered myeloperoxidase (MPO) levels, indicating reduced neutrophil activity and inflammation (100 mg/kg, p<0.05; 150 mg/kg, p<0.01), and nitric oxide (NO) levels, suggesting diminished oxidative stress (100 mg/kg, p<0.05; 150 mg/kg, p<0.01). The treatment also led to a significant reduction in spleen cell proliferation (100 mg/kg, p<0.05; 150 mg/kg, p<0.01) and pro-inflammatory cytokine levels, with TNF-α, IL-1β, and IL-6 all showing decreases comparable to those observed with sulfasalazine (p<0.01). Moreover, TMNB effectively downregulated IL-1β, IL-6, TNF-α, COX2, and iNOS (p<0.01), affirming its broad-spectrum anti-inflammatory and immunomodulatory effects. TMNB exhibits potent anti-inflammatory and immunomodulatory activities, suggesting that TMNB could be a new therapeutic agent for managing inflammatory bowel disease. This study supports the need for further clinical trials to explore TMNB's efficacy and safety in human subjects.
Read full abstract