BackgroundChronic alcohol drinking increases the risk of alcohol use disorders, causing various neurological disorders. However, the impact of different ethanol levels on a spectrum of behaviors during chronic drinking remains unclear. In this study, we established an intermittent access to ethanol in a two-bottle choice (IA2BC) procedure to explore the dose-dependent effects of ethanol on the behavioral performance of C57BL/6 J mice. MethodsAdult male C57BL/6 J mice were provided voluntary access to different ethanol concentrations (0 %, 5 %, 10 %, and 20 % ethanol) under a 12-week IA2BC paradigm. A battery of behavioral tests was administered to assess alterations in pain threshold, anxiety-like behaviors, locomotor activity, motor coordination, and cognition. Ethanol consumption and preference were monitored during each session. Moreover, the liver, heart, and lung tissues were examined using pathological microscopy. ResultsThe average (standard deviation) ethanol consumption of mice under the IA2BC paradigm increased dose-dependently to 5.1 (0.2), 8.7 (0.7), and 15.9 (0.8) g/kg/24 h with 5 %, 10 %, and 20 % ethanol, respectively. However, there is no significant difference in ethanol preference among all the ethanol groups. Chronic ethanol drinking caused hyperalgesia, cognitive impairment, and motor incoordination, but caused no changes in body temperature, locomotor activity, or anxiety-like behaviors. Minor histopathological alterations in the liver were detected; however, no major abnormal pathology was observed in the heart or lungs. ConclusionThese findings clarify the link between ethanol dosage and behavioral changes in mice over a 12-week IA2BC paradigm, thereby bridging the knowledge gap regarding the effects of chronic ethanol drinking on neurological disorders.
Read full abstract