The mechanisms involved in alcohol use disorder, a chronic relapsing brain disorder, are complex and involve various signalling systems in the brain. Recently, the orexigenic peptide ghrelin was shown to be required for alcohol-induced reward, an effect mediated via ghrelin receptors, GHS-R1A, at the level of the cholinergic-dopaminergic reward link. Moreover, ghrelin increases and GHR-R1A antagonists reduce moderate alcohol consumption in mice, and a single nucleotide polymorphism in the GHS-R1A gene has been associated with high alcohol consumption in humans. Therefore, GHS-R1A gene expression and alcohol intake were investigated in high, AA (Alko, Alcohol), versus low, ANA (Alko, Non-Alcohol), alcohol consuming rats as well as in Wistar rats. In the AA and ANA rats plasma ghrelin levels were also measured. GHS-R1A gene expression was increased in AA compared to ANA rats in nucleus accumbens, ventral tegmental area, amygdala, prefrontal cortex and hippocampus. A similar trend was observed in the ventral tegmental area of Wistar rats consuming high amounts of alcohol. Furthermore, the AA rats had significantly smaller reduction of plasma ghrelin levels over time, after several weeks of alcohol exposure, than had the ANA rats. The present study provides further evidence for that the ghrelin signalling system, in particular at the level of the mesocortocolimbic dopamine system, is involved in alcohol consumption, and thus possibly contributes to alcohol use disorder. Therefore the GHS-R1A may constitute a novel candidate for development of new treatment strategies for alcohol dependence.
Read full abstract