While much is known about radiation-induced DNA double-strand breaks (DSBs) and their repair, the question of how deletions of different sizes arise as a result of the processing of DSBs by the cell's repair systems has not been fully answered. In order to bridge this gap between DSBs and deletions, we critically reviewed published data on mechanisms pertaining to: (a) repair of DNA DSBs (from basic studies in this area); (b) formation of naturally occurring structural variation (SV) - especially of deletions - in the human genome (from genomic studies) and (c) radiation-induced mutations and structural chromosomal aberrations in mammalian somatic cells (from radiation mutagenesis and radiation cytogenetic studies). The specific aim was to assess the relative importance of the postulated mechanisms in generating deletions in the human genome and examine whether empirical data on radiation-induced deletions in mouse germ cells are consistent with predictions of these mechanisms. The mechanisms include (a) NHEJ, a DSB repair process that does not require any homology and which functions in all stages of the cell cycle (and is of particular relevance in G0/G1); (b) MMEJ, also a DSB repair process but which requires microhomology and which presumably functions in all cell cycle stages; (c) NAHR, a recombination-based DSB repair mechanism which operates in prophase I of meiosis in germ cells; (d) MMBIR, a microhomology-mediated, replication-based mechanism which operates in the S phase of the cell cycle, and (e) strand slippage during replication (involved in the origin of small insertions and deletions (INDELs). Our analysis permits the inference that, between them, these five mechanisms can explain nearly all naturally occurring deletions of different sizes identified in the human genome, NAHR and MMBIR being potentially more versatile in this regard. With respect to radiation-induced deletions, the basic studies suggest that those arising as a result of the operation of NHEJ/MMEJ processes, as currently formulated, are expected to be relatively small. However, data on induced mutations in mouse spermatogonial stem cells (irradiation in G0/G1 phase of the cell cycle and DSB repair presumed to be via NHEJ predominantly) show that most are associated with deletions of different sizes, some in the megabase range. There is thus a 'discrepancy' between what the basic studies suggest and the empirical observations in mutagenesis studies. This discrepancy, however, is only an apparent but not a real one. It can be resolved by considering the issue of deletions in the broader context of and in conjunction with the organization of chromatin in chromosomes and nuclear architecture, the conceptual framework for which already exists in studies carried out during the past fifteen years or so. In this paper, we specifically hypothesize that repair of DSBs induced in chromatin loops may offer a basis to explain the induction of deletions of different sizes and suggest an approach to test the hypothesis. We emphasize that the bridging of the gap between induced DSB and resulting deletions of different sizes is critical for current efforts in computational modeling of genetic risks.
Read full abstract