Restoring hexavalent chromium (Cr(VI)) to trivalent chromium (Cr(III)) from contaminated soil is a cost-effective alternative for attenuating Cr(VI) toxicity to the ecosystem. A new electrokinetic remediation (EKR) system with UV light was explored to overcome an energy barrier to catalyze Cr(VI) reduction from the surface soil near the anodic reservoir. Natural organic matters and minerals from the contaminated soil acted as electron donors and catalysts for Cr(VI) photo-reduction and no additional chemical reagent. There was almost no residual Cr(VI) in anolyte after UV/EKR compared with the conventional EKR. The reduction improved the efficiency of EKR in the soil near the anodic reservoir by dropped the Cr(VI) negative mass flux caused by electroosmosis advection and concentration diffusion. The pathways of Cr(VI) photo-reduction are possibly dominated by ligand-to-metal charge transfer, i.e., photocatalytic cyclic reduction by Fe(III)/Fe(II) complexes on the surface of the minerals and in soil pore fluid and the photo-induced decomposition of chromate ester. It is concluded that UV/EKR is a clean, efficient, and low-cost method for remediation of Cr(VI)-contaminated soil.