Modern anti-counterfeiting technology can effectively suppress and combat forgery and counterfeiting behaviors, which is of great significance in information security, national defense and economy. However, the realization of multi-dimensional, integrated, difficult-to-copy and easy-to-detect optical anti-counterfeiting devices is still a challenge. In this paper, a multi-dimensional and polarization-dependent anti-counterfeiting device with structure color is designed, which is composed of patterned liquid crystal polymer (LCP) nematic layer and thermotropic cholesteric liquid crystal (TLC) layer. It has the advantages of displaying and hiding polarization states, wide color tuning range, convenient operation, high integration and security. For incident light with a specific polarization state, the patterned nematic phase LCP layer can carry out regionalized phase editing and polarization state modulation, while the TLC layer can selectively reflect the incident light. Therefore, a patterned structural color security label is subtly realized. The anti-counterfeiting device can realize the display, hiding, color adjustment and image/background conversion of patterns by adjusting the polarization direction of incident light. In addition, the TLC layer in the device can meet the application requirements of the anti-counterfeit device at different environmental temperatures through the flexible design of the system weight ratio. Furthermore, the device can be easily heated by body temperature, realize dynamic real-time wide-spectrum color modulation and reversible pattern erasure, and further enhance its security dimension and security. The multi-polarization-type anti-counterfeiting device has three-dimensional anti-counterfeiting efficacy. The first dimensional anti-counterfeiting efficacy is achieved by the thermochromic liquid crystal layer. The thermochromic liquid crystal layer has no reflection color outside the operating temperature range of TLC material, and the entire device displays black background. The second and the third dimensional anti-counterfeiting efficacy are related to the polarization state of the incident light and the linear polarization direction, respectively. Only when the incident light is linearly polarized light and its polarization direction makes an angle of 45° or –45° with respect to the optical axis of the liquid crystal, will the device show the designed pattern. Consequently, our proposed anti-counterfeiting device is expected to provide a new idea for developing the anti-counterfeiting field.
Read full abstract