It is proposed that following peripheral nerve injury abnormal sprouting of Aβ-fibre primary afferent neurons in the spinal cord contributes to the allodynia that often occurs with such injury. Allodynia is characterized as pain due to a stimulus which is normally non-noxious. Our recent in vivo experiments show that intrathecal administration of neurotrophin-3 (NT-3), in normal animals, induces allodynia and sprouting of Aβ-fibres. In this study, we examine whether intrathecal administration of NT-3 antisense oligonucleotides (50 μM), via an osmotic pump for 14 days, attenuates nerve injury-induced sprouting and allodynia. The oligonucleotides used in this study were phosphorothioate modified and control experiments, using an ELISA, confirm that intrathecal administration of the antisense induces a significant decrease in NT-3 levels in the spinal cord. All surgery was conducted on anaesthetized Wistar rats (sodium pentobarbitone, i.p. 50 mg/kg). Consistent with previous studies, transganglionic labelling of Aβ-fibres with choleragenoid-horseradish peroxidase (C-HRP) shows that complete transection of the sciatic nerve induces an expansion of C-HRP label into lamina II of the spinal dorsal horn. Using image analysis, we find that intrathecal administration of NT-3 antisense attenuates the density of C-HRP labelling in lamina II in nerve injured animals. A NT-3 sense oligonucleotide (50 μM) has no effect. To test the effect of NT-3 antisense on allodynia, the nociceptive flexion reflex is examined, using an Ugo Basile Analgesymeter, in animals with partial sciatic nerve ligation. Intrathecal administration of 50 μM NT-3 antisense significantly attenuates nerve injury-induced allodynia, whereas the sense oligonucleotide has no effect. These results provide further evidence that endogenous NT-3 contributes to both nerve injury-induced Aβ-fibre sprouting and allodynia and demonstrates the potential of neurotrophin-3 antisense oligonucleotides as therapeutic agents for neuropathic pain.
Read full abstract