The European Union (EU) identified a list of Critical Raw Materials (CRMs) crucial for its economy, aiming to find alternative sources. Seawater is a promising option as it contains almost all elements, although most at low concentrations. However, to the present, the CRMs' recovery from seawater is technically and economically unfeasible. Other alternatives to implement sea mining might be preferred, such as reverse osmosis brines or saltworks bitterns (after sodium chloride crystallisation). The CRMs' extraction in a selective way can be achieved using highly selective recovery processes, such as chelating sorbents. This study focuses on extracting Trace Elements (TEs) from solar saltworks brines, including boron, cobalt, gallium and germanium, using commercial N-methylglucamine sorbents (S108, CRB03, CRB05). The application of these sorbents has shown potential for boron recovery, but their selectivity for cobalt, gallium, and germanium requires further investigation. This research aims to assess these sorbents' kinetics and column mode performance for TEs recovery from synthetic bitterns. Boron and germanium were rapidly sorbed, reaching equilibrium (>90 %) within 1 h, except for S108, which took 2 h. In column mode, 20–25 pore volumes of bittern were treated to remove boron and germanium, but competition from other elements reduced treatment capacity. An acidic elution (1 M hydrochloric acid) allowed to elute them (>90 %), reaching concentration factors for germanium and boron of 35 and 11, respectively, while cobalt and gallium had less affinity for the sorbents. In addition, the experiments performed were fitted by a mass transfer model to determine the equilibrium constants and selectivities. Therefore, bittern mining has been proven as a secondary/alternative source to obtain CRMs, which can lead the EU to a position in which its dependence on other countries to obtain these raw materials would be decreased.
Read full abstract