Using a novel method of isochronous mass spectrometry, the masses of ^{62}Ge, ^{64}As, ^{66}Se, and ^{70}Kr are measured for the first time, and the masses of ^{58}Zn, ^{61}Ga, ^{63}Ge, ^{65}As, ^{67}Se, ^{71}Kr, and ^{75}Sr are redetermined with improved accuracy. The new masses allow us to derive residual proton-neutron interactions (δV_{pn}) in the N=Z nuclei, which are found to decrease (increase) with increasing mass A for even-even (odd-odd) nuclei beyond Z=28. This bifurcation of δV_{pn} cannot be reproduced by the available mass models, nor is it consistent with expectations of a pseudo-SU(4) symmetry restoration in the fp shell. We performed abinitio calculations with a chiral three-nucleon force (3NF) included, which indicate the enhancement of the T=1 pn pairing over the T=0 pn pairing in this mass region, leading to the opposite evolving trends of δV_{pn} in even-even and odd-odd nuclei.
Read full abstract