C-type lectins (CTLs) are glycan-binding pattern recognition receptors (PRRs) that can bind to carbohydrates on pathogen surfaces, triggering immune responses in shrimp innate immunity. In this study, a unique Ca2+-inhibited CTL named FcLec was identified and characterized in Chinese shrimp Fenneropenaeus chinensis. The full-length cDNA sequence of FcLec was 976 bp (GenBank accession number KU361826), with a 615 bp open reading frame (ORF) encoding 204 amino acids. FcLec possesses a C-type lectin-like domain (CTLD) containing four conserved cysteines (Cys105, Cys174, Cys192, and Cys200) and two sugar-binding site structures (QPD and LNP). The tertiary structure of FcLec deduced revealed three α-helices and eight β-pleated sheets. The mRNA expression levels of FcLec in hemocytes and the hepatopancreas were markedly elevated after stimulation with Vibrio anguillarum and white spot syndrome virus (WSSV). The recombinant FcLec protein exhibited Ca2+-independent hemagglutination and bacterial agglutination, but these activities were observed only in the presence of EDTA to chelate metal ions. These findings suggest that FcLec plays important and functionally distinct roles in the shrimp's innate immune response to bacteria and viruses, enriching the current understanding of the relationship between CTL activity and Ca2+ in invertebrates.
Read full abstract