Pine wilt disease (PWD), caused by Bursaphelenchus xylophilus, is one of the most severe forest diseases worldwide. PWD causes devastating disasters to Chinese pine trees, seriously threatening forestry production and the forest ecological environment, and causes economic losses of over ten billion yuan per year to China. Previous studies have shown that the spread of PWD is closely related to climate factors. Today, PWD is spreading rapidly owing to abnormal climate changes. In order to provide a reference for controlling the spread of PWD in China, in this study, we accurately assessed the risk of the continued spread of PWD in Northeast China; a correlative species distribution model (MaxEnt) (RM = 1, AUC = 0.9904) was used to evaluate China’s climate suitability for PWD. The effects of climate factors on the spread of PWD in Northeast China were studied using Liaoning Province as an example by analyzing the relationship between the changes in average precipitation, average temperature, average relative humidity, average vapor pressure deficit, average wind speed, average sunshine duration and the area of the PWD epidemic over the past five years. These results suggest that with the change in climate, the areas suitable for PWD have expanded, and certain previously unsuitable areas for its distribution have become suitable. Temperature and precipitation were found to play key roles in the occurrence and damage of PWD, and hot and arid conditions favored the spread of PWD. It is recommended that for areas within the suitable range of PWD but not yet epidemic areas, quarantine should be strengthened to prevent the further spread of PWD. In addition, special attention should be paid to epidemic areas with high temperatures and arid while the monitoring of PWD should be strengthened to achieve the early detection and timely treatment of infected epidemic trees. Our results indicate that PWD undoubtedly poses a major threat to Northeast Chinese pine species if climate change proceeds as projected. In the future, more attention should be paid to monitoring the northward spread of PWD, and further studies should consider meteorological data forecasts, which could facilitate timely control measures.
Read full abstract