We study how a chimera state in a one-dimensional medium of nonlocally coupled oscillators responds to a homogeneous in space periodic in time external force. On a macroscopic level, where a chimera can be considered as an oscillating object, forcing leads to entrainment of the chimera's basic frequency inside an Arnold tongue. On a mesoscopic level, where a chimera can be viewed as an inhomogeneous, stationary, or nonstationary pattern, strong forcing can lead to regularization of an unstationary chimera. On a microscopic level of the dynamics of individual oscillators, forcing outside of the Arnold tongue leads to a multiplateau state with nontrivial locking properties.
Read full abstract