From 2020 to 2022, we collaborated with experienced cardiac surgeons from three general children's hospitals to collect heart sound signals from 1259 participants using electronic stethoscopes. To ensure the accuracy of the labels, the labels for all data were confirmed by two cardiac experts. To establish the baseline of ZCHsound, we extracted 84 features and used machine learning models to evaluate the performance of the classification task. The ZCHSound database was divided into two datasets: one is a high-quality, filtered clean heart sound dataset, and the other is a low-quality, noisy heart sound dataset. In the evaluation of the high-quality dataset, our random forest ensemble model achieved an F1 score of 90.3% in the classification task of normal and pathological heart sounds. This study has successfully established a large-scale, high-quality, rigorously standardized pediatric CHD sound database with precise disease diagnosis. This database not only provides important learning resources for clinical doctors in auscultation knowledge but also offers valuable data support for algorithm engineers in developing intelligent auscultation algorithms.