Current research in epigenetic age acceleration (EAA) is limited to non-Hispanic White individuals. It is imperative to improve inclusivity by considering racial and ethnic minorities in EAA research. To compare non-Hispanic Black with non-Hispanic White survivors of childhood cancer by examining the associations of EAA with cancer treatment exposures, potential racial and ethnic disparity in EAA, and mediating roles of social determinants of health (SDOH). In this cross-sectional study, participants were from the St Jude Lifetime Cohort, which was initiated in 2007 with ongoing follow-up. Eligible participants included non-Hispanic Black and non-Hispanic White survivors of childhood cancer treated at St Jude Children's Research Hospital between 1962 and 2012 who had DNA methylation data. Data analysis was conducted from February 2023 to May 2024. Three treatment exposures for childhood cancer (chest radiotherapy, alkylating agents, and epipodophyllotoxin). DNA methylation was generated from peripheral blood mononuclear cell-derived DNA. EAA was calculated as residuals from regressing Levine or Horvath epigenetic age on chronological age. SDOH included educational attainment, annual personal income, and the socioeconomic area deprivation index (ADI). General linear models evaluated cross-sectional associations of EAA with race and ethnicity (non-Hispanic Black and non-Hispanic White) and/or SDOH, adjusting for sex, body mass index, smoking, and cancer treatments. Adjusted least square means (ALSM) of EAA were calculated for group comparisons. Mediation analysis treated SDOH as mediators with average causal mediation effect (ACME) calculated for the association of EAA with race and ethnicity. Among a total of 1706 survivors including 230 non-Hispanic Black survivors (median [IQR] age at diagnosis, 9.5 [4.3-14.3] years; 103 male [44.8%] and 127 female [55.2%]) and 1476 non-Hispanic White survivors (median [IQR] age at diagnosis, 9.3 [3.9-14.6] years; 766 male [51.9%] and 710 female [48.1%]), EAA was significantly greater among non-Hispanic Black survivors (ALSM = 1.41; 95% CI, 0.66 to 2.16) than non-Hispanic White survivors (ALSM = 0.47; 95% CI, 0.12 to 0.81). Among non-Hispanic Black survivors, EAA was significantly increased among those exposed to chest radiotherapy (ALSM = 2.82; 95% CI, 1.37 to 4.26) vs those unexposed (ALSM = 0.46; 95% CI, -0.60 to 1.51), among those exposed to alkylating agents (ALSM = 2.33; 95% CI, 1.21 to 3.45) vs those unexposed (ALSM = 0.95; 95% CI, -0.38 to 2.27), and among those exposed to epipodophyllotoxins (ALSM = 2.83; 95% CI, 1.27 to 4.40) vs those unexposed (ALSM = 0.44; 95% CI, -0.52 to 1.40). The association of EAA with epipodophyllotoxins differed by race and ethnicity (β for non-Hispanic Black survivors, 2.39 years; 95% CI, 0.74 to 4.04 years; β for non-Hispanic White survivors, 0.68; 95% CI, 0.05 to 1.31 years) and the difference was significant (1.77 years; 95% CI, 0.01 to 3.53 years; P for interaction = .049). Racial and ethnic disparities in EAA were mediated by educational attainment (<high school vs ≥college, ACME = 0.13; high school vs ≥college, ACME = 0.07; mediation = 22.71%) and ADI (ACME = 0.24; mediation = 22.16%). In this cross-sectional study of childhood cancer survivors, race and ethnicity moderated the association of EAA with epipodophyllotoxin exposure and racial and ethnic differences in EAA were partially mediated by educational attainment and ADI, indicating differential treatment toxic effects by race and ethnicity. These findings suggest that improving social support systems may mitigate socioeconomic disadvantages associated with even greater accelerated aging and reduce health disparities among childhood cancer survivors.