Carbon nanotubes (CNTs) are identified as potential candidates for drug and biomolecular loading and delivery. CNTs of different chiralities have different diameters, which may significantly affect their abilities to interact with different types of biomolecules. Herein, we employ classical molecular dynamics simulation to provide insight into the curvature-dependent interactions between a model protein, chicken villin headpiece subdomain (HP36), with CNTs having chiralities (8,8), (12,12), and (20,20). It is revealed that, with increasing radii, the protein encounters more aromatic carbon atoms on the surface of the CNT, leading to its increasing strength of adsorption. However, the extent of adsorption has a limiting magnitude, after which an increase in the radius of the nanotube has practically no effect on the extent of adsorption. Spontaneous encapsulation of the protein was demonstrated using a (28,28) CNT, where the protein is found to undergo insignificant structural perturbation. Finally, steered molecular dynamics simulations have been performed to mimic the force-induced release of the protein from within the nanotube cavity. It has been identified that a minimum force of ∼300 pN and a minimum velocity of 4 Å ns-1 are required to release the protein from the CNT at 300 K. Any external force below the critical magnitude and inducing velocity less than 4 Å ns-1 allows the translocation of the protein through the inner surface of the CNT; however, before being released, the protein undergoes unfolding, thereby losing the secondary structure and biological activity.
Read full abstract