Phosvitin (PV), a highly phosphorylated protein found in chicken egg yolk, possesses multiple bioactivities (including anti-aging and anticancer) and functional properties (including emulsifier and metal-binding capacities). The carbohydrate moiety attached to PV has been reported, but its N-glycan structure is unknown. In this study, we performed structural and quantitative analyses of N-glycans from PV using liquid chromatography-tandem mass spectrometry (MS/MS). N-glycan structures were identified using observed precursor ion m/z and MS/MS fragment ions. Each quantity was obtained relative to the total N-glycans (100%). Thirty-seven N-glycans were identified, including 22 sialylations with a negative charge (a sum of the relative quantity of each, 96.4%) comprising 13 mono- (31.6%), 7 di- (57.5%), 2 tri- (7.3%) sialylations. The sialylated N-glycan isomers with α2-3 (flexible conformation) and α2-6 (rigid conformation) linkages were distinguished using α2-3- and α2-3,6 sialidase treatments and intensity ratios of the N-acetylglucosamine and sialic acid ions (Ln/Nn) with different fragmentation stabilities. The α2-6/α2-6 (53.8%), α2-6 (31.6%), α2-3/α2-6/α2-6 (6.5%), and α2-3/α2-6 (3.7%) linkages in mono-, di, or tri-antennary structures were identified. These negatively charged structures may affect the emulsification and metal-binding capacity of PV. This is the first study to identify and quantify N-glycans in PV, including predominantly 22 sialylated N-glycan isomers with more rigid α2-6 linkages than α2-3 linkages.