In this paper we present the Hietarinta Chern–Simons supergravity theory in three space-time dimensions which extends the simplest Poincaré supergravity theory. After approaching the construction of the action using the Chern–Simons formalism, the analysis of the corresponding asymptotic symmetry algebra is considered. For this purpose, we first propose a consistent set of asymptotic boundary conditions for the aforementioned supergravity theory whose underlying symmetry corresponds to the supersymmetric extension of the Hietarinta algebra. We then show that the corresponding charge algebra contains the super-bms3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\mathfrak {bms}}}_{3}$$\\end{document} algebra as subalgebra, and has three independent central charges. We also show that the obtained asymptotic symmetry algebra can alternatively be recovered as a vanishing cosmological constant limit of three copies of the Virasoro algebra, one of which is augmented by supersymmetry.
Read full abstract